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Abstract This work investigated the growth of Kluyver-

omyces marxianus NRRL Y-7571 in solid-state fermenta-

tion in a medium composed of sugarcane bagasse,

molasses, corn steep liquor and soybean meal within a

packed-bed bioreactor. Seven experimental runs were

carried out to evaluate the effects of flow rate and inlet air

temperature on the following microbial rates: cell mass

production, total reducing sugar and oxygen consumption,

carbon dioxide and ethanol production, metabolic heat and

water generation. A mathematical model based on an

artificial neural network was developed to predict the

above-mentioned microbial rates as a function of the fer-

mentation time, initial total reducing sugar concentration,

inlet and outlet air temperatures. The results showed that

the microbial rates were temperature dependent for the

range 27–50�C. The proposed model efficiently predicted

the microbial rates, indicating that the neural network

approach could be used to simulate the microbial growth in

SSF.
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Introduction

Mathematical models have an important role in optimization

of bioreactors used in solid-state fermentation (SSF). Bio-

reactor models aim to describe the overall performance of the

bioreactor and consist of two sub-models: a balance/trans-

port sub-model that describes mass and heat transfer within

and between the various phases of the bioreactor and a

kinetic sub-model that describes how the growth rate of the

microorganism depends on the key local environmental

variables [1]. The growth kinetics may be assessed by simple

empirical equations or mechanistic models that attempt to

describe intraparticle diffusion processes related to growth.

The latter approach focuses on how growth can be limited by

events that occur at the level of individual particles, instead

of evaluating overall bioreactor performance [2].

More robust models of the microbial metabolism could

be focused on metabolic pathways and metabolism regu-

lation, which emulate the interactions occurring within the

cell, coupling extracellular phenomena (biomass formation

rate, substrate uptake and product excretion rates) with

intracellular carbon flux and energy distribution by steady-

state mass balances [3]. Stoichiometry models have already

been used in physiological studies of submerged cultures of

Kluyveromyces marxianus [4, 5], but there are no reports of

the application of such models in SSF due to the hetero-

geneity of the culture medium that affects the measure-

ments used to generate the data for the model. In addition,

the packed-bed SSF is a particularly challenging batch

process to model, since microbial strains must adapt to

highly variable environmental conditions that involve

water and nutrient gradients, oxygen limitation and mainly

the high temperatures reached in the medium. It is known

that the above-listed variables influence microbial metab-

olism and affect the process performance.
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Nevertheless, developing a mechanistic model of a

microorganism grown in SSF is a hard task due to the

difficulty of quantifying and separating the cell and the

main metabolic compounds of the solid medium because of

the bed heterogeneity, which are essential to build the

model [6]. Based on these difficulties, most of current

bioreactor models have simple empirical kinetic sub-

models, such as linear, logistic, exponential or two-phase

equations [1, 2]. The greatest disadvantage of simple

empirical models to predict the microbial behavior in solid-

state fermentation is that they have little ability to explain

the real phenomena that are occurring in the process.

Consequently, bad predictions will be found when these

models are applied in the simulation of the SSF data when

the kinetic sub-model is to be coupled with the mass and

energy balances.

The great recent advances in computers and data pro-

cessing techniques encourage the use of artificial neural

network algorithms [7]. An artificial neural network (ANN)

can be an alternative to modeling the complex phenomena

associated with the microbial growth in SSF. Although the

ANN too is an empirical model like the simple kinetic

equation mentioned above, it is usually very accurate if the

training and validation procedures are properly carried out.

So far, there are no reports in the literature regarding the

use of ANN to simulate the microbial growth in solid-state

fermentation.

In this context, the aim of this work was to develop a

mathematical model of the growth of the yeast Kluyver-

omyces marxianus NRRL Y-7571 in solid-state fermenta-

tion using a packed-bed bioreactor configuration. An

artificial neural network (ANN) was built, using the fer-

mentation time, initial total reducing sugar concentration,

and inlet and outlet air temperatures as inputs. The calcu-

lated responses were the mass of the cell, metabolic heat,

carbon dioxide, ethanol and metabolic water productions,

besides the total reducing sugar and oxygen consumptions.

Materials and methods

Agroindustrial residues

The medium consisted of 2 kg of sugarcane bagasse sup-

plemented (related to the sugarcane bagasse) with pre-

treated sugarcane molasses 15 wt%, corn steep liquor

(CSL) 30 wt% and soybean meal 20 wt% [8]. Sugarcane

bagasse was obtained from Cotrel Ltda (Erechim, RS,

Brazil), CSL from Corn Products Brazil (Mogi Guaçu, SP,

Brazil), soybean meal from Olfar S.A. (Erechim, RS,

Brazil) and cane molasses from Éster Refinery (Campinas,

SP, Brazil). The compositions of the different media are

presented in Table 1.

The cane molasses was pre-treated following the method

described by Sguarezi et al. [9]. The pH of the solution of

sugarcane molasses (200 g/l) was adjusted with sulfuric

acid 0.5 M to 5.0. The solution was set to rest at 24�C for

24 h. The medium was then centrifuged at 5,0009g for

15 min, and the final pH was adjusted with NaOH 1.0 M

until 4.0.

Microorganism and medium

The strain of Kluyveromyces marxianus NRRL Y-7571

obtained from NRRL (Northern Regional Research Labo-

ratory, now the National Center for Agricultural Utilization

Research, Peoria, IL) was maintained on YM agar medium

(g/L): yeast extract 3.0, malt extract 3.0, peptone 5.0,

glucose 10.0, agar 20.0 and sub-cultured every 3 weeks.

Cell production for the pre-inoculum was carried out by

inoculating 10 ml of liquid YM medium in a 50-ml test

tube with a loopful of stock culture and incubating it at

30�C for 24 h.

The inoculum medium contained (g/l): sucrose 20.0,

yeast extract 5.0, K2HPO4 5.0, NH4Cl 1.5, KCl 1.15 and

MgSO4.7H2O 0.65 at an initial pH of 6.8. Each test tube

with YM medium was transferred to a 500-ml Erlenmeyer

flask with 100 ml of medium and incubated at 30�C and

150 rpm for 24 h [10, 11].

Solid-state fermentations

The packed-bed bioreactor consisted of a cylindrical

stainless steel vessel (34 cm diameter and 50 cm height)

connected to an air humidifier, which supplied air at

relative humidity of 95–99%. The saturated air at the

operation temperature entered in the bottom of the bio-

reactor and passed through the bed, reaching the exit

located at the top.

The moisture content of the bagasse was corrected to

65 wt%, and it was then autoclaved at 121�C for 20 min.

In a previous study we showed that the optimum initial

moisture content of the substrates for inulinase production

Table 1 Characterization of the substrates employed in the fermen-

tation medium formulation

Wt% Sugarcane

bagasse

Soybean

bran

CSL Molasses

Moisture 3.0 3.0 55.0 39.0

Protein ND 42.5 18.8 2.2

Lipids ND 8.5 1.0 0.7

Carbohydrate 40.0 30.0 7.5 52.2

Fiber ND 10.0 13.0 ND

Ash 2.4 6.0 4.5 8.2

ND not determined
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by SSF was in the range of 60 to 75% [11]. Based on this

information, the initial moisture content of the medium

was then maintained at 65%. Since the sterilization pro-

cess increased the moisture by approximately 3%, the

moisture content of the medium was still within the

optimum range. The fermentation runs were started with

the inoculation of the supplemented bagasse with a vol-

ume of inoculum corresponding to a cell mass of 14 g.

The supplemented solid substrate and the inoculum vol-

ume were maintained under brand agitation for 10 min in

a helical homogenizer (Marconi, Brazil). The bioreactor

was filled with 2 kg of sugarcane bagasse (dry basis),

supplemented as described above, which corresponded to

a bed height of 40 cm.

The dynamic behavior of the process was evaluated at 0,

2, 4, 8, 12, 18 and 24 h. A new fermentation was started

each time, and the whole content of the bioreactor was

sampled due to the impossibility of homogenization of the

solids. The variation between the tests was negligible. A

total of seven experimental runs were carried out at dif-

ferent inlet air temperatures and flow rates, as presented in

Table 2.

Experimental and calculated data

The total reducing sugars (TRS) were extracted from the

fermented medium by adding 100 ml of bi-distillated water

in 20 g of moist fermented medium, following incubation

at 40�C and 150 rpm for 60 min [11]. TRSs were quanti-

fied by the 3,5-dinitrosalicylic acid method [12]. The sugar

concentration was evaluated at four different bed heights,

namely 0–10, 10–20, 20–30 and 30–40 cm.

The inlet and outlet air temperatures were continuously

monitored by a temperature probe (PT100, NOVUS,

Brazil). In addition, the temperature of the moist substrate

was monitored inside the bioreactor at 10, 20 and 30 cm

from the bottom. The respiratory metabolism of the

microorganism was evaluated by determining CO2 pro-

duction, assuming that all the CO2 produced was due to

respiration. The CO2 was analyzed at the outlet air from the

bioreactor by a CARBOCAP GMT220 sensor (VAISALA,

Inc., Finland). The temperature probes and CO2 sensor

were connected to a data acquisition board (FIELDLOG-

GER NOVUS, Brazil).

The general stoichiometry for aerobic microbial growth

with ethanol formation considered in this work was:

aC6H12O6 þ bNH4 þ kO2 ! CH1;94O0;76N0;17 þ cCO2

þ dH2Oþ rC2H6O

ð1Þ

where a, b, k, c, d and r are the stoichiometry coefficients

(C-mol compound per C-mol biomass), which were com-

puted by the C, H, O and N balances and the experimental

measurements of CO2 and TRS. Applying the elemental

balances over Eq. (1), an uncertain algebraic system is

obtained, since there are four elements (C, H, O and N) and

six unknown coefficients. As there are two variables

experimentally measured (TRS and CO2), the remaining

coefficients in Eq. (1) can be calculated on a carbon-mol

basis (C-mol).

The elemental dry cell composition (CH1.94O0.76N0.17)

was obtained from Silva-Santisteban et al. [4]. The corn

steep liquor (CSL) used as nitrogen source in this study

was a complex mixture of free amino acids, peptides,

proteins, inorganic salts, organic acids and many other

compounds. A detailed stoichiometry model for the process

would be very complicated, and in practice one would

lump all the components of the CSL into one nitrogen-

containing substrate as ammonia [13].

The above stoichiometry is valid considering that the

oxygen is not limited inside the bioreactor [14] and that the

yeast metabolism is essentially aerobic [5]. The production

of ethanol was taken into account due to the high initial

concentration of TRS in the medium, which could cause a

deviation in the normal metabolic pathway to ethanol

production. Based on the stoichiometry, the oxygen con-

centration in the outlet air stream, the global metabolic

water and ethanol production in the moist solid medium

were calculated considering the CO2 measurement in the

outlet air stream. It is important to emphasize that these

compounds could be calculated by the TRS data, assuming

that the TRS concentration is basically composed of glu-

cose or fructose. However, the experimental error associ-

ated with the determination of the TRS concentration in the

medium (±10%) is higher than the CO2 measurement

(\1%).

The microbial growth expressed in terms of mass of

cells was calculated considering the results of the oxygen

uptake rate, according to the following equation [15]:

Table 2 Experimental conditions investigated in this work

Run Total reducing

sugar concentration

(g of TRS per kg

of dry bagasse)

Volumetric air

flow rate (m3/h)

Inlet air

temperature

(�C)

1 42.9 2.0 27.0

2 43.1 2.0 30.0

3 39.3 2.0 33.0

4 37.4 3.0 27.0

5 44.6 3.0 30.0

6 36.0 3.0 33.0

7 42.5 2.4 30.0
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where

a ¼ m � YX=O � Dt: ð2bÞ

The procedure to estimate the biomass content in a

certain time (Xn) requires the knowledge of the biomass

yield based on the oxygen consumption (YX/O) and the

maintenance coefficient (m). The maintenance coefficient

was set at 0.0031 gO2/(gcell h) [15]. The oxygen in

biomass (YX/O) yield coefficient was computed as:

YX=O ¼
1

k
ð3Þ

The metabolic heat (Qgen, kJ/h) was calculated by a

suitable energy balance in the bioreactor, assuming

negligible loss of heat through the bioreactor walls:

Qgen ¼ F � qair � Cpair þ /air;in � Cpv

� �
� Tout � F � qair

� Cpair þ /air;out � Cpv

� �
� Tin ð4Þ

where F is the volumetric air flow rate (m3/h), qair is the

density of dry air (1.2 kg/m), Cpair and Cpv are the heat

capacity of the dry air and the water vapor, respectively

[1,009 and 1,880 J/(kg �C), respectively], Tin and Tout are

the temperature measured at the inlet and outlet air streams,

respectively, /air;in and /air;out are the relative humidity of

the inlet and outlet air streams, respectively. The humidity

at the inlet and outlet air stream was constantly measured

by a relative humidity probe (RHT-WM NOVUS, Brazil)

connected to an acquisition board.

Model formulation

A feed forward neural network developed by the Process

Simulation Group of DEA/URI and implemented in

FORTRAN 90 language was employed with the following

topology:

• Input layer:

– The input layer was composed of four nodes related

to the fermentation time, initial total reducing sugar

concentration, inlet and outlet air temperatures.

• Hidden layer:

– Only one hidden layer was used, and the number of

nodes in this layer was determined so that the

minimal deviation from experimental rates would

be obtained.

• Transfer function:

– The transfer function employed was the hyperbolic

tangent in the output and hidden layer.

• Output layer:

– The output layer was composed of seven nodes

related to the output variables such as the microbial

rates as mass of cells, metabolic heat, carbon

dioxide, ethanol and metabolic water productions,

besides total reducing sugar and oxygen

consumptions.

The above inputs were combined to minimize the

objective function F, defined according to Eq. 5.

F ¼
Xi¼NR

i¼1

Xj¼NPE

j¼1

vexp
i;j � vcalc

i;j

� �2

ð5Þ

where NR is the number of experimental rates (metabolic

heat, TRS, biomass, ethanol, CO2, O2 and H2O), NPE is the

number of experimental points where the F was calculated,

vi,j
exp and vi,j

calc are the experimental and calculated microbial

rates i at point j, respectively. It is important to note that the

experimental rates mentioned above are experimentally

determined values (CO2 and TRS), calculated by Eq. 1

(O2, biomass, metabolic water and ethanol) and calculated

by Eq. 4 (metabolic heat). Calculated data were used

for training the ANN, assuming that the proposed stoichi-

ometric equation is representative of the microbial phe-

nomena that occur inside the substrate bed. This strategy

was used because of the difficulty in experimental deter-

mination of the rates for O2, biomass, metabolic water and

ethanol in SSF, since the bed is a completely heteroge-

neous system.

In the training procedure, the weights and the bias were

optimized using two heuristic algorithms: the Simulated

Annealing combined with Nelder and Mead [16] and the

Particle Swarm Optimization (PSO) [17]. In the Simulated

Annealing algorithm, the initial artificial annealing tem-

perature (TA) and cooling rate (a) were set at 10.0 and 0.98,

respectively. In the PSO algorithm, the search interval for

weights and the bias were allowed to vary between -5 and

5. In addition, 40 particles were used, and the inertial

Xn ¼
YX=O � Dt � 1

2
dO2

dt t¼0
þ dO2

dt t¼n

� �
þ
Pi¼n�1

i¼1

dO2

dt t¼i

� �
þ 1� a

2

� �
� X0 � a �

Pi¼n�1

i¼1

Xi

1þ a=2ð Þ ð2aÞ
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weight, the cognition and social parameters were set as 0.7,

1.0, 1.0, respectively [17].

Six experimental runs were used for training the ANN

(runs 1–6 of Table 1). One additional experimental con-

dition was used for the validation step (run 7 of Table 1).

The number of experimental points used in the training and

validation steps was 34,496 and 5,762, respectively. The

high number of points used for training and validation is

due to the large number of acquisition points of on-line

variables, which were measured every 30 s.

Results and discussion

Experimental microbial rates

Figures 1 and 2 present the experimental rates obtained

during the growth of the yeast Kluyveromyces marxianus

NRRL Y-7571 in SSF for the runs 1–3 and 4–7, respec-

tively. The first column of the two figures shows the pro-

duction rates of CO2, ethanol, metabolic water and the TRS

consumption rate, while the second column presents the

production rates of cells and metabolic heat and the con-

sumption rate of oxygen. Similar behavior was verified for

the seven experiments. In the first 3 h of fermentation, the

yeast metabolism was slow due to the adaptation period to

the new environment and the low medium temperature.

This strain is characterized by an optimal growth temper-

ature of 36�C, as already reported in the literature [9–11,

18, 19]. The highest microbial rates occurred between 7

and 9 h of fermentation, when the mean moist substrate

temperature was around 36�C (average temperature from

the four different measurement points), as illustrated in

Fig. 3. After 9 h of fermentation the rates decreased,

approaching zero. Also, the temperature of the moist sub-

strate was around the inlet air temperature.

The influence of the inlet air temperature and volumetric

air flow rate on the metabolic rates can be easily visualized

in Figs. 1 and 2. The variation in the inlet air temperature

caused little change in the maximum rates values, but

influenced the fermentation time at which these maximum

rates were observed. The fermentation time was reduced

when the inlet air temperature was increased. For example,

in run 1 the maximum rates were observed around 10 h,

whereas in runs 2 and 3 the maximum rates were verified

around 9 and 8 h, respectively. The flow rate showed little

influence on the responses, since identical results were

obtained with flow rates from 2.0 to 3.0 m3/h. The same

tendency was verified regarding the highest value for the

outlet air temperature and mean moist solid temperature in

Fig. 3.

The main cause for the decrease in the metabolic rates

after 9 h of fermentation is the quick decrease of the TRS

concentration in the sugarcane bagasse, which limits the

growth. When the TRS concentration reaches critical val-

ues, the microbial metabolism is restricted to the mainte-

nance, as can be verified by the low values of TRS

consumption and metabolic heat generation after 15 h of

fermentation.

The direct quantification of the growth in SSF is a hard

task, and most studies presented in the literature used an

indirect approach to quantify the cell growth. In a previous

work, we used the glucosamine content to correlate the

microorganism growth [11]. However, this method is

usually not very accurate. In the present work, we adopted

the procedure described by Brand et al. [15], where the

biomass is calculated based on the oxygen consumption

data. The specific growth rate for biomass production

obtained in this study was lower than the rate obtained in

previous works with the same strain in submerged fer-

mentation [18, 20]. However, a direct comparison is diffi-

cult due to the different characteristics of each process. The

low growth rate obtained in SSF has two opposite aspects.

Little cell production decreases the product yield since

most of the bioproducts are growth-associated or partially

associated with growth. On the other hand, the low growth

rate is interesting when associated with an elevated meta-

bolic heat yield coefficient, since this association could

reduce the temperature increase in the bioreactors to levels

where no inhibitions in the growth occur. Thus, the process

may become technically viable.

Mathematical modeling

It is well established that the ANN is acceptable as a

modeling technique in scientific and industrial applications

because of the good ability to represent multivariable

systems, particularly for highly non-linear dynamic sys-

tems (such as SSF) without much knowledge of the process

under consideration. However, this tool may lead to poor

predictions because of conflicts with fundamental con-

straints represented by the conservation principles, espe-

cially outside of the training domain. Besides, an

expressive amount of good quality data is required for

training the neural network to obtain a good performance

of prediction. This large amount of data is normally diffi-

cult to obtain in practice. In addition, the application of an

artificial neural network (ANN) to model a problem usually

requires five steps (network topology, transfer function,

initial weight assignment, training and validation), and in

each of them the researcher has to select the proper net-

work parameters. The selection made at each step is based

on experience, available guidelines and applications [19].

In this work, the input layer was composed of fermen-

tation time, total reducing sugar concentration, and inlet

and outlet air temperatures. The inlet air temperature was
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chosen as an input to the ANN because it influences the

microbial rates and the outlet air temperature because it is a

consequence of the microbial growth. In addition, these

variables are easily measured. The fermentation time was

chosen because the outlet air temperature curve had a

Gaussian shape. In other words, at earlier fermentation

times (0–9 h), the increase in the temperature had a posi-

tive effect on the rates and, from the middle to the final

fermentation, the same temperature showed a negative

effect. This is better visualized in Figs. 1 and 2, which

present the experimental rates obtained during the growth

of Kluyveromyces marxianus NRRL Y-7571 in SSF. The

rates are expressed in terms of mass of compound per hour

of fermentation. Variations in the TRS concentration

among the experiments were detected due to the complex

composition of the different substrates used in medium

formulation. Since these variations in TRS can influence

the microbial rates, the TRS concentration was included as

an input to the ANN. The concentrations were expressed as

grams of TRS per kg of dry sugar cane bagasse.

The interpolation ability of the ANN was well explored

based on the fermentation time and the outlet air temper-

ature due to the wide range of these variables. The tem-

perature range will not be extrapolated in real

Fig. 1 Microbial rates for the runs 1–3. First column: Experimental

or calculated (symbols) and predicted (solid lines) rates of the TRS,

CO2 ethanol and metabolic water; second column: experimental or

calculated (symbols) and predicted by ANN (solid lines) rates of the

metabolic heat, O2 and microbial growth. The rates for O2, ethanol,

metabolic water and microbial growth were obtained by Eq. 1; the

rate for metabolic heat was obtained by Eq. 4; the rates for CO2 and

TRS were experimentally measured
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fermentations for two reasons. Firstly, the optimal tem-

perature for Kluyveromyces marxianus growth is 36�C, and

temperatures above 50�C are deleterious to the microor-

ganism. Secondly, the microbial rates at temperatures

lower than 20�C are generally slow and are not common

practice. Besides, the fermentation times above 24 h are

problematic in SSF, since drying of the solid medium

considerably affects the process performance. Thus, any

improvement in the process should be carried out within

the range used to train the ANN. In addition, the amount of

experimental points used to train the ANN was sufficiently

large to guarantee a good modeling performance.

The output layer was composed of the main microbial

rates as the consumption of total reducing sugar and

Fig. 2 Microbial rates for the runs 4–7. First column: Experimental

or calculated (symbols) and predicted by ANN (solid lines) rates of

the TRS, CO2 ethanol and metabolic water; second column:

experimental or calculated (symbols) and predicted (solid lines) rates

of the metabolic heat, O2 and microbial growth. The rates for O2,

ethanol, metabolic water and microbial growth were obtained by

Eq. 1; the rate for metabolic heat was obtained by Eq. 4; the rates for

CO2 and TRS were experimentally measured
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oxygen, and production of carbon dioxide, biomass, etha-

nol, metabolic water and heat. One important aspect when

using an artificial neural network as an alternative to

modeling is the choice of the transfer function, since this

affects the velocity and the performance during the training

and application of the ANN. The hyperbolic-tangent

transfer function increased the network learning rate and

performance (data not shown), and was selected for this

reason as the transfer function for the ANN used in this

study. The definition of the number of hidden neurons and

Fig. 3 Experimental outlet air temperature (dark symbols) and mean moist substrate temperature (light symbols), considered as a mean value

among the measurements at 10, 20 and 30 cm inside the bed
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the optimization algorithm will be discussed in more

details in the next section.

Topology and optimization algorithm to train the ANN

The most common method to train the ANN is the back-

propagation algorithm. However, we have tested two

heuristic methods to estimate the weights and bias of the

ANN, and their performance was compared to the several

investigated topologies. In the first case, the Simulated

Annealing (SA) combined to the simplex algorithm was

used. The role of SA in the overall approach is to allow

wrong-way movements, simultaneously providing asymp-

totic convergence to the global optimum. The role of the

non-linear simplex is to generate system configurations. In

the second case, the optimization routine was the Particle

Swarm Optimization (PSO). The PSO presents interesting

characteristics along the interactions. In the initial inter-

actions, the random character of the search is high, and the

particles lead to a global search over the search region. As

the interactions evolve, the particles concentrate around the

more promising regions found during the exploration step.

This local search in the values for the weights and bias

leads to improvement of the problem solution. Besides, the

PSO algorithm is not very sensitive to initial guesses of

model parameters, which makes its use appealing when

large numbers of unknown parameters are present in the

model (as is the case of the ANN) [17].

The influence of 5–20 hidden neurons on the value of

the objective function (F) was investigated for the two

optimization algorithms. Figure 4 presents the reduction of

the SSR value in all the topologies investigated for the SA

and PSO algorithms. The best topology was the 4-15-7 (4

inputs-15 hidden neurons-7 outputs), which leads to the

lowest values of the F independently of the algorithm used.

The application of too few hidden neurons limits the ability

of the neural network to model the process, and the use of

too many may result in learning the noise present in the

database used in training.

The SA algorithm showed better results than the PSO in

terms of the lowest F value, whereas the PSO was more

efficient, since the number of evaluations of the objective

function (Eq. 5) was smaller in all the situations. The best

results obtained by the SA algorithm are due to the fact that

the search region for the weights and bias is larger than that

supplied to the PSO algorithm. If the search region is

expanded in the PSO algorithm, the chance for concen-

tration of some particles around false promising regions

increases, resulting in a low precision of the estimated

weights and bias. In this study, the search region supplied

to the PSO algorithm was the same for all the weights and

bias. Better results would be obtained if a different interval

for each parameter was implemented. However, this is

difficult in practice due to the large number of parameters.

The number of evaluations of the objective function is

dependent on the selection of the parameters of each

algorithm. For the SA, the artificial annealing temperature

and the cooling rate determine the number of evaluations.

The larger the value of the annealing temperature and the

lower the cooling rate are, the more evaluations are

required to optimize the parameters. Considering that the

objective of this work was the development of a reliable

model to predict the main microbial rates of K. marxianus

grown in SSF, it was preferable to spend larger amounts of

time to train the ANN to the detriment of computationally

efficient software. Based on these results, the SA algorithm

with the 4-15-7 topology was chosen.

Model simulations

The applicability of the 4-15-7 ANN to simulate the

experimental microbial rates is presented in Figs. 1 and 2

for the data used during the training (runs 1–6) and for the

validation step (run 7). The ANN showed good perfor-

mance in predicting the experimental profiles of the

microbial rates through the time domain for all seven runs.

Some deviations were verified in the prediction of the

maximum rate of production of CO2 and cells and of O2

consumption, but these deviations do not put the reliability

of the ANN model at risk. The deviations between exper-

imental values and model predictions of the TRS rate are

within the experimental error associated with its measure-

ment (±10%). It is important to note the good performance

of the prediction of the rate of metabolic heat production.

In practice, the rate of metabolic heat production is the

most important variable in the scale-up of the bioreactors

Fig. 4 Training performance of

the simulated annealing and

PSO algorithms
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for SSF, since the greatest limitation in the industrial scale

is the removal of metabolic heat. A reliable model to

predict this rate is essential to simulate the global perfor-

mance of the industrial bioreactor.

The success of the application of ANN to predict the main

rates associated with the growth of the yeast K. marxianus

grown in SSF is related to two aspects. Firstly, a large

number of experimental points to train the network was used.

Secondly, the temperature range used as input was suffi-

ciently large to guarantee that in real application these limits

could not be extrapolated. This makes the ANN a robust tool,

since it is known by its good interpolation ability. In sum-

mary, the development of a mechanistic model of the

microbial growth in SSF is practically impossible in prac-

tice, and the results obtained here show the possibility of

using the ANN as an important tool in this sense.

Conclusions

This work evaluated the effects of the flow rate and inlet air

temperature on the growth of Kluyveromyces marxianus

NRRL Y-7571 in solid-state fermentation. Slight differ-

ences in the metabolic rate profiles were verified among the

seven experimental conditions investigated. The highest

metabolic rates were obtained when the mean temperature

of the moist substrate reached values in the range of 30–

38�C, in a fermentation time between 4 and 9 h. At the

highest rates, the output air temperature reached 50�C,

which is deleterious to microbial growth.

The model developed here to predict the main microbial

rates of the yeast K. marxianus grown in solid-state fer-

mentation showed good performance during both training

and validation steps. In a general way, the approach pro-

posed in this work was capable of correlating the complex

metabolic rates involved in the cultivations of microorgan-

isms in SSF. The proposed model structure in this work was

shown to be an interesting alternative to substitute the simple

empirical microbial model, which could be combined with

the balance/transport sub-model to obtain a more robust and

reliable tool for dynamic simulations of the SSF processes.
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